Collision-based energetic comparison of rolling and hopping over obstacles
نویسندگان
چکیده
Locomotion of machines and robots operating in rough terrain is strongly influenced by the mechanics of the ground-machine interactions. A rolling wheel in terrain with obstacles is subject to collisional energy losses, which is governed by mechanics comparable to hopping or walking locomotion. Here we investigate the energetic cost associated with overcoming an obstacle for rolling and hopping locomotion, using a simple mechanics model. The model considers collision-based interactions with the ground and the obstacle, without frictional losses, and we quantify, analyse, and compare the sources of energetic costs for three locomotion strategies. Our results show that the energetic advantages of the locomotion strategies are uniquely defined given the moment of inertia and the Froude number associated with the system. We find that hopping outperforms rolling at larger Froude numbers and vice versa. The analysis is further extended for a comparative study with animals. By applying size and inertial properties through an allometric scaling law of hopping and trotting animals to our models, we found that the conditions at which hopping becomes energetically advantageous to rolling roughly corresponds to animals' preferred gait transition speeds. The energetic collision losses as predicted by the model are largely verified experimentally.
منابع مشابه
Mobility Feasibility Study of Fuel Cell
Small hopping robots have been proposed that offer the potential to greatly increase the reach of unmanned space exploration. Using hopping, bouncing, and rolling, a small spherical robot could access and explore subterranean areas, such as craters and caves, on distant planets. Hopping mobility allows the robot to overcome larger obstacles than conventional wheeled rovers. Bouncing and rolling...
متن کاملمسیریابی حرکت روباتهای ماشینواره با روش پیشروی سریع
The Robot Motion Planning (RMP) problem deals with finding a collision-free start-to-goal path for a robot navigating among workspace obstacles. Such a problem is also encountered in path planning of intelligent vehicles and Automatic Guided Vehicles (AGVs). In terms of kinematic constraints, the RMP problem can be categorized into two groups of Holonomic and Nonholonomic problems. In the first...
متن کاملMutual Interference of Frequency Hopping with Collision Avoidance Systems
The aim of this article is to quantify and analyze mutual interference of Frequency Hopping with Collision Avoidance (FH/CA) systems. The FH/CA system is a frequency hopping system where stations select the least jammed channel from several possible before the next jump. The article describes a mathematical model that allows determining the upper limit of the probability of collision of multipl...
متن کاملطراحی کنترلگر تعقیب مسیر هماهنگ برای گروه شناور زیرسطحی با در نظر گرفتن مسئله اجتناب از برخورد
In this paper the problem of coordinated path following for a group of Autonomous Underwater Vehicle (AUV) subjected to obstacle and collision avoidance is considered. At first a back stepping controller is used for an AUV to design a path following controller and its stability is examined via Lyapunov criteria. Then using of graph theory, modeling of interconnection between AUV systems is addr...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کامل